

Horizon 2020 European Union Funding for Research & Innovation

Innovative monitoring and predictive maintenance solutions on lightweight wagon

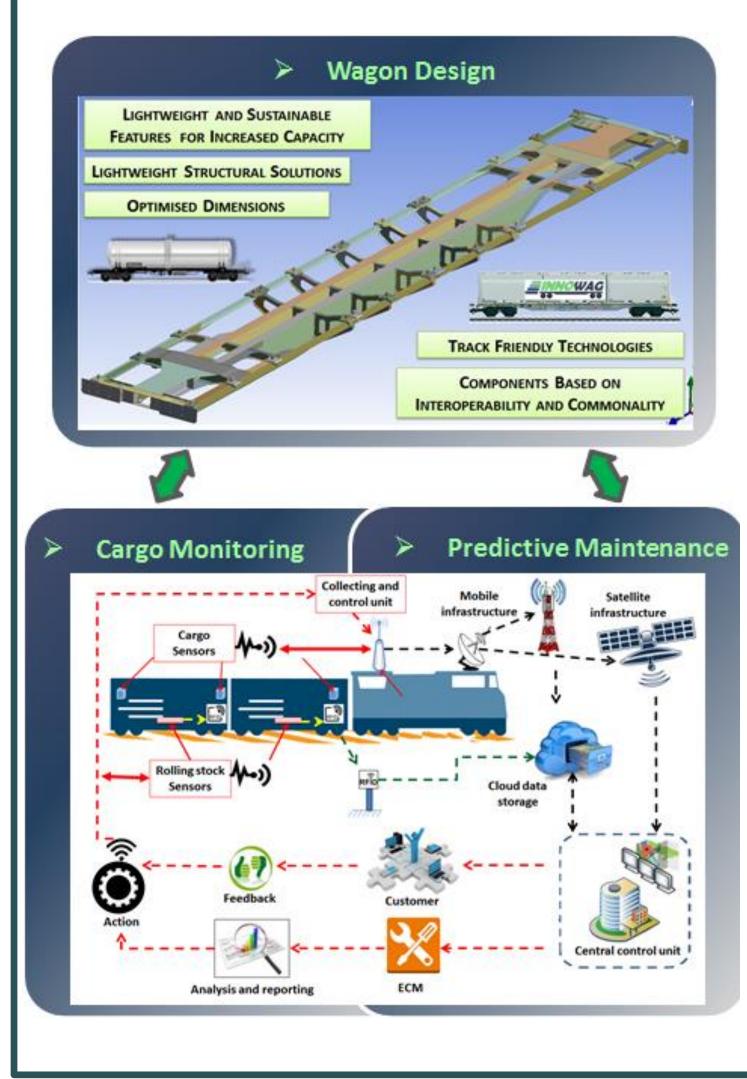
THE INNOWAG PROJECT

Project coordinator: Newcastle University

Total Budget: 1.5M

Duration: 01/11/2016 – 30/06/2019

Call addressed: S2R-OC-IP5-03-2015

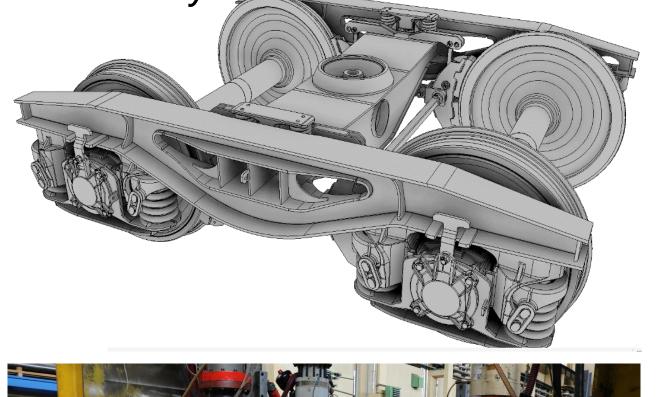

Complementary CFM project: S2R-CFM-IP5-01-2015 - FR8RAIL

The INNOWAG project aims at developing a rail freight service that fits the needs of modern manufacturing and supply chain, through its following **specific objectives**:

WAGON DESIGN

Specific objectives and subsequent approach:

- > Development of a novel concept of modular and lightweight wagon through:
 - Analysis and selection of lightweight materials;
 - Optimised structural design;
 - Modular components and/or sub-assemblies;
- \succ Structural strength and fatigue analysis of critical sub-assemblies;
- \succ Validation of design concepts through specific laboratory tests.


- > Increase freight rail capacity by optimising and lightweighting the wagon design for increasing the ratio payload/wagon tare;
- > Increase freight logistic capabilities by:
- *i.* offering real time data on freight location and condition through a smart self-powered sensor system and communication technologies; *ii.* optimised wagon modular design capable to transport various types of goods; and
- *iii. improved availability to freight* customers, enabled by a safer and more reliable and interoperable freight service;
- Increase RAMS and reduce LCC by implementing modern and innovative predictive maintenance analytics, models, and procedures.

INNOWAG lightweight concepts:

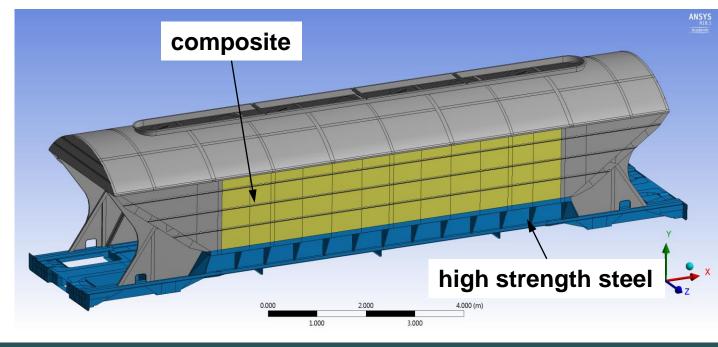
Lightweight Y25 bogie design

(17% mass reduction)

- HSS bogie frame & optimised design
- *lightweight wheelsets and brake* assembly

Bogie frame fatigue testing at VUZ

Lightweight 60' container wagon (22% mass reduction)


- HSS underframe & optimised design
- lightweight brake system

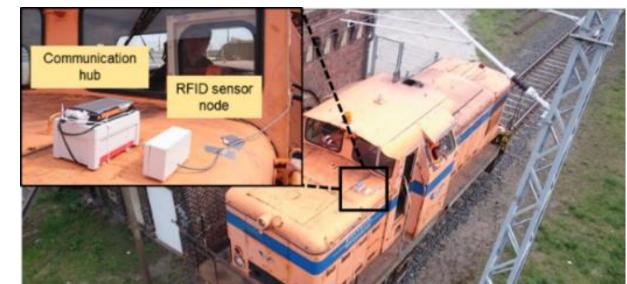
Lightweight cereal hopper wagon

(21–27% overall mass reduction;

51% carbody mass reduction)

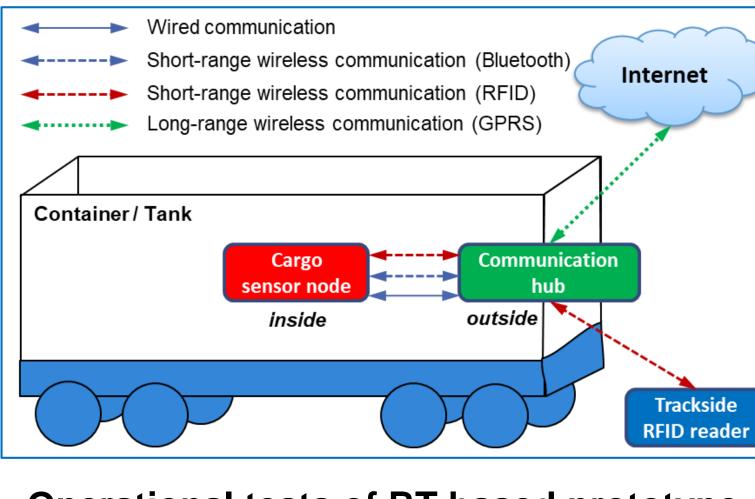
- HSS underframe and bottom
- composite (GFRP) side wall panels
- *lightweight bogies*

CARGO CONDITION MONITORING


Specific objectives and approach

- Formulation of the overall measurement concept with focus on architecture design and sensor arrangement;
- > Design of a power supply system based on energy harvesting technologies;
- \succ Design of a data communication system based on WSN;
- \succ Validation of the developed cargo condition monitoring system at TRL5.

Cargo Monitoring prototypes: Bluetooth (BT) based prototype

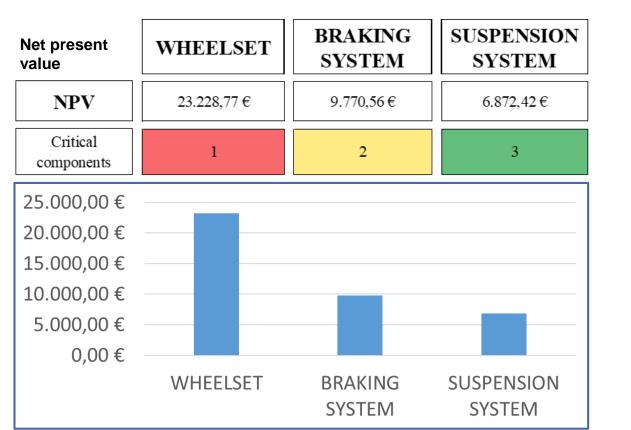

Onboard RFID-based prototype

Eintart

FID reade

Generic system architecture:

Operational tests of BT-based prototype (supported by UVA in Romania)

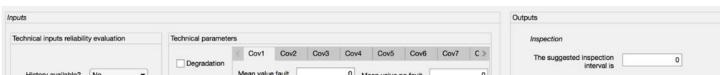

Temperature	Pressure (corrected)
50	1010

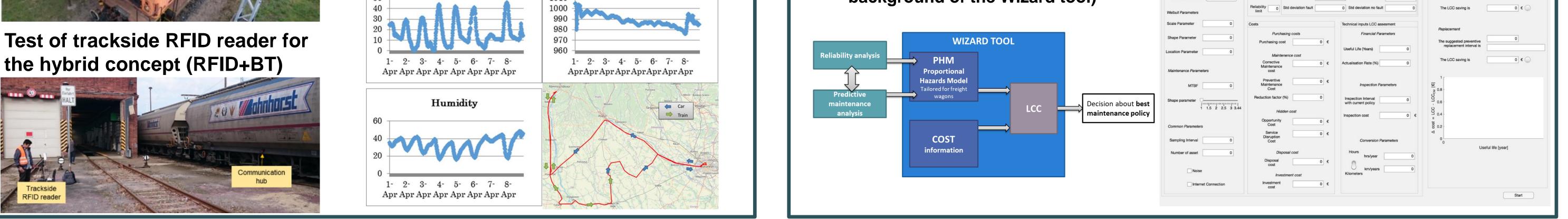
PREDICTIVE MAINTENANCE

Development of *approaches* to support *predictive maintenance (PDM)* strategy for freight vehicles:

- > Cost driven analysis through Life Cycle Cost (LCC) model
- Reliability driven analysis through Failure Mode and Effect Analysis (FMEA)
- > Development of a guided procedure (*Wizard Tool*) to support maintenance operators in the optimisation of the maintenance policy on freight wagons

Example result of cost-driven analysis: Prioritisation of components based on their Life Cycle Cost




Logical structure of the process to support the decision maintenance (theoretical background of the Wizard tool)

Example result of reliability-driven analysis: Prioritisation of failure modes for the wheelset based on FMEA analysis

Failure	GCU code	Nc (failure per 100 sub-assemblies)	Failure rate	Frequency rank	GCU class	GCU control criteria	Severity		Detectability		Frequency		Risk Priority Number (RPN)
axle crack	1.6.1. 1	2	1.31E-06	4	5	vc	unsafe without warning	10	moderate	5	low: relatively few failures	3	200
wheel out of round	1.3.3; 1.7.2; 1.7.2. 1	23	6.04E-06	6	4	M; VC/ VC	very high	8	very low	7	moderate: often there are failures	6	336
wheel crack	1.3.5; 1.3.6; 1.5	4	3.50E-07	3	4	M; VC/ VC	very high	8	very low	7	low: relative few failures	3	168
Wheel: build-up of material	1.3.4;	3	1.97E-06	4	4	м	very high	8	very low	7	moderate: seldom there are failures	4	224
wheel thermome chanical crack	1.3.5; 1.3.6; 1.5	4	3.50E-07	3	4	M; VC	very high	8	very low	7	low: relatively few failures	3	168

Implementation of the Wizard tool

